мун обш	а. директора по УН иципального бюд цеобразовательног редняя школа №7	(жетного го учреждения	Директор муниципального бюджетного общеобразовательного учреждения «Средняя школа №7»	
«	»		Сидоркина	Л. Н.
			приказ от	20r. №
		элективного і Избранные в	программа курса по физике вопросы физики классы	

Согласована

Утверждена

Рассмотрена на заседании ШМО учителей естественнонаучных дисциплин, протокол от «____» _____ 20___ г. № ____

Пояснительная записка

Настоящий элективный курс дополняет и развивает школьный курс физики и ориентирован на оптимизацию индивидуально-ориентированного развития личности. Программа предназначена для учащихся 10 и 11 классов и рассчитана на 68 учебных часов из расчета 1 учебный час в неделю.

Важнейшей целью физического образования является формирование умений работать со школьной учебной физической задачей. Последовательно это можно сделать в рамках предлагаемой программы, целями которой являются:

- развитие познавательных интересов, интеллектуальных способностей в процессе решения физических задачи самостоятельного приобретения новых знаний
- совершенствование полученных в основном курсе знаний и умений;
- формирование представлений о постановке, классификации, приемах и методах решения школьных физических задач.
- подготовка к ЕГЭ
- научиться различать физические явления и процессы в природе, технике, видеть взаимосвязь явлений;

Программа элективного курса согласована с содержанием программы основного курса. Она ориентирует учителя на дальнейшее совершенствование уже усвоенных учащимися знаний и умений, углубление изучаемого материала, а также получение новых знаний.

В физической науке существует огромное количество методов познания, которые позволяют решать задачи изящно, рационально, красиво, а значит, будят эмоции и интерес, побуждают знать глубже и шире, рождают желание искать.

Залачи

- 1. углубление и систематизация знаний учащихся;
- 2. усвоение учащимися общих алгоритмов решения задач;
- 3. овладение основными методами решения задач.

Личностные, метапредметные и предметные результаты освоения.

Личностные:

- Сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;
- Убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общения, уважение к творцам науки и техники, отношение к физике как к элементу общечеловеческой культуры;
- Самостоятельность в приобретении новых знаний и практических умений;
- Мотивация образовательной деятельности школьников на основе личностноориентированного подхода;
- Формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные:

• Овладевать навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановка целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;

- Понимать различия между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладевать универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- Формировать умения воспринимать, перерабатывать и представлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- Приобретать опыт самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- Развивать монологическую и диалогическую речь, уметь выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на его точку зрения, признавать право другого человека на иное мнение;
- Осваивать приемы действий в нестандартных ситуациях, овладевать эвристическими методами решения проблем;
- Формировать умения работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметные:

- Формировать представления о закономерной связи и познания природы, об объективности научного знания; о системообразующей роли физики для развития других естественных наук, техники и технологий; о научном мировоззрении как результате изучения основ строения материи и фундаментальных законов физики;
- Приобретать опыт применения научных методов познания, наблюдения физических явлений, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов; понимать неизбежность погрешности любых измерений;
- Осознавать необходимость применения достижений физики и технологий для рационального природопользования;
- Овладевать основами безопасного использования естественных и искусственных электрических и магнитных полей, электромагнитных и звуковых волн, естественных и искусственных ионизирующих излучений во избежание их вредного воздействия на окружающую среду и организм человека;
- Развивать умение планировать в повседневной жизни свои действия с применением полученных знаний механики, электродинамики, термодинамики и тепловых явлений с целью сбережения здоровья;
- Формировать представления о нерациональном использовании природных ресурсов и энергии, о загрязнении окружающей среды как следствии несовершенства машин и механизмов.

Познавательные: в предлагаемом курсе физики изучаемые определения и правила становятся основой формирования умений выделять признаки и свойства объектов. В процессе вычислений, измерений, объяснений физических явлений, поиска решения задач у

учеников формируются и развиваются основные мыслительные операции (анализа, синтеза, классификации, сравнения, аналогии И т.д.), умения различать разнообразные обосновывать этапы решения учебной задачи, производить анализ и преобразование информации, используя при решении самых разных физических задач простейшие предметные, знаковые, графические модели, таблицы, диаграммы, строя и преобразовывая их в соответствии с содержанием задания). Решая задачи, рассматриваемые в данном курсе, можно выстроить индивидуальные пути работы с физическим содержанием, требующие различного уровня логического мышления.

Регулямивные: в процессе решения задачи ребёнок учится самостоятельно определять цель своей деятельности, планировать её, самостоятельно двигаться по заданному плану, оценивать и корректировать полученный результат.

Коммуникативные: в процессе решения задач осуществляется знакомство с физическим языком, формируются речевые умения: дети учатся высказывать суждения с использованием физических терминов и понятий, формулировать вопросы и ответы в ходе выполнения задания, доказательства верности или неверности выполненного действия, обосновывают этапы решения учебной задачи, учатся работать в парах, группах, фронтально.

Образовательные технологии.

- информационно-коммуникационные;
- здоровьесберегающие;
- проблемно-поисковый метод;

Формы контроля:

Контроль сформированности общеучебных умений, навыков и способов деятельности предполагается осуществлять следующим образом: Традиционные способы: устный (фронтальный) опрос, физический диктант, зачет, олимпиада.

Нетрадиционные способы: исследовательская работа, творческая работа, реферат.

Основное содержание (68 ч.) Введение – 1ч.

Современные методы познания мира. Физическая задача. Правила и алгоритмы решения задач. Качественные и количественные задачи. Основы теории погрешностей. Погрешности прямых косвенных измерений. Представление результатов измерений в форме таблиц и графиков.

Механика – 19ч.

Кинематика поступательного движения. Графики основных кинематических параметров прямолинейного движения. Графический и координатный способы решения задач на прямолинейное равномерное движение.

Движение под действием силы всемирного тяготения. Решение задач на движение под действие сил тяготения: свободное падение, движение тела брошенного вертикально вверх, движение тела брошенного под углом к горизонту. Алгоритм решения задач на определение дальности полета, времени полета, максимальной высоты подъема тела.

Движение материальной точки по окружности. Период обращения и частота обращения. Циклическая частота. Угловая скорость. Центростремительное ускорение. Космические скорости. Решение астрономических задач на движение планет и спутников.

Динамика. Законы Ньютона. Силы в механике: силы тяжести, упругости, трения, гравитационного притяжения. Решение задач по алгоритму: движение тела под действием нескольких сил. Решения задач по алгоритму: движение по наклонной плоскости. Решения задач по алгоритму: движение по окружности. Решения задач по алгоритму: движение связанных тел. Решения задач: «Вес тела. Перегрузки»

Условия равновесия тел. Момент силы. Центр тяжести тела. Задачи на определение характеристик равновесия физических систем и алгоритм их решения. Гидростатика. Давление в жидкости. Закон Паскаля. Сила Архимеда. Вес тела в жидкости. Условия плавания тел. Воздухоплавание. Решение задач динамическим способом на плавание тел.

Законы сохранения импульса и энергии и их совместное применение в механике. Алгоритм решение задач на сохранение импульса и реактивное движение. Уравнение Бернулли – приложение закона сохранения энергии в гидро- и аэродинамике.

Молекулярная физика и термодинамика –10 ч.

Уравнение Бернулли — приложение закона сохранения энергии в гидро- и аэродинамике. Основное уравнение МКТ газов. Решение задач на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул. Уравнение состояния идеального газа — следствие из основного уравнения МКТ. Изопроцессы. Решение задач на описание характеристики состояния газа в изопроцессах. Определение экстремальных параметров в процессах, не являющихся изопроцессами. Закон Дальтона. Газовые смеси. Полупроницаемые перегородки.

Внутренняя энергия одноатомного газа. Работа и количество теплоты. Первый закон термодинамики и его применение для различных процессов изменения состояния системы. Адиабатный процесс. Тепловые двигатели. Расчет КПД тепловых установок графическим способом.

Электродинамика -19ч.

Конденсаторы. Параллельное и последовательное соединение конденсаторов. Энергия электрического поля. Движение заряженной частицы в электрическом поле конденсатора. Расчет количества теплоты, выделяющегося при соединении конденсаторов.

Электрический ток в металлах и растворах и расплавах электролитов. Электрический ток в газах и вакууме. Электрический ток в полупроводниках

Движение проводника с током в магнитном поле. Движение заряженной частицы в магнитном поле. ЭДС индукции в движущихся проводниках.

Практическая работа: «Определение магнитного поля Земли»

Аналогия между механическими и электромагнитными колебаниями. Гармонические электромагнитные колебания. Конденсатор и катушка в цепи переменного тока. Превращение энергии в колебательном контуре. Переменный ток.

Оптика -19ч.

Отражение света. Закон отражения света. Плоское зеркало. Преломление света. Полное внутреннее отражение. Линза. Формула тонкой линзы. Построение изображений в оптических приборах. Волновые свойства света. Интерференция света. Дифракция света. Дисперсия света. Дифракционная решетка. Интерференция в тонких пленках. Некоторые области применения интерференции. Границы применимости геометрической оптики. Электромагнитные волны. Распространение электромагнитных волн. Модуляция и детектирование.

Электромагнитные волны-3ч.

Электромагнитные волны. Принципы радиосвязи и телевидения. Распространение электромагнитных волн. Модуляция и детектирование

Квантовая физика-10ч.

Фотоэффект. Опыты А.Г. Столетова. Уравнение Эйнштейна для фотоэффекта. Фотон. Гипотеза де Бройля о волновых свойствах частиц. Дифракция электронов. Давление света. Теория атома водорода. Квантование орбиты скоростей. Энергетические уровни атома водорода. Обобщенная формула Бальмера.

Тематическое планирование. 10 класс

№п/п	Тема урока				
	Введение				
1	Инструктаж по ОТ ИОТ №007 -2017, ИОТ №008-2017. Современные методы познания мира. Физическая задача. Правила и алгоритмы решения задач. Качественные и количественные задачи. Основы теории погрешностей. Погрешности прямых косвенных измерений. Представление результатов измерений в форме таблиц и графиков.				
	Механика				
2	Кинематика поступательного движения. Графики основных кинематических параметров прямолинейного движения. Решение задач механики графическим и координатным способами				
3	Решение задач механики графическим и координатным способами				
4	Решение задач на движение под действие сил тяготения: свободное падение, движение тела брошенного вертикально вверх.				
5	Решение задач на движение под действие сил тяготения: свободное падение, движение тела брошенного вертикально вверх.				
6	Решение задач на движение под действие сил тяготения: движение тела брошенного под углом к горизонту. Алгоритм решения задач на определение дальности полета, времени полета, максимальной высоты подъема тела.				
7	Решение задач на движение под действие сил тяготения: движение тела брошенного под углом к горизонту. Алгоритм решения задач на определение дальности полета, времени полета, максимальной высоты подъема тела.				
8	Решение задач на движение под действие сил тяготения: движение тела брошенного под углом к горизонту. Алгоритм решения задач на определение дальности полета, времени полета, максимальной высоты подъема тела.				

9 Движение материальной точки по окружности. Период обращения и Циклическая частота. Угловая скорость. Центростремительное ускор скорости.				
10 Закон всемирного тяготения. Движение под действием силы всемирн Решение астрономических задач на движение планет и спутников.	ого тяготения.			
11 Динамика. Законы Ньютона. Силы в механике: силы тяжести, упруго гравитационного притяжения.	ести, трения,			
12 Решение задач по алгоритму: движение тела под действием нескольк	их сил.			
13 Решения задач по алгоритму: движение по наклонной плоскости.				
14 Решения задач по алгоритму: движение по окружности.				
Решения задач по алгоритму: движение связанных тел.				
Решения задач: «Вес тела. Перегрузки»				
17 Условия равновесия тел. Момент силы. Центр тяжести тела. Задачи н характеристик равновесия физических систем и алгоритм их решения	-			
18 Условия равновесия тел. Момент силы. Центр тяжести тела. Задачи н характеристик равновесия физических систем и алгоритм их решения	•			
19 Гидростатика. Давление в жидкости. Закон Паскаля. Сила Архимеда. жидкости. Условия плавания тел. Воздухоплавание. Решение задач д способом на плавание тел.				
20 Законы сохранения импульса и энергии и их совместное применение	е в механике.			
Молекулярная физика и термодинамика				
21 Уравнение Бернулли – приложение закона сохранения энергии в гидр	Уравнение Бернулли – приложение закона сохранения энергии в гидро- и аэродинамике.			
22 Основное уравнение МКТ газов. Решение задач на описание поведен основное уравнение МКТ, определение скорости молекул.	ия идеального газа:			
23 Уравнение состояния идеального газа — следствие из основного урави Изопроцессы. Решение задач на описание характеристики состояния изопроцессах.				
24 Решение задач на описание характеристики состояния газа в изопроц	eccax.			
25 Определение экстремальных параметров в процессах, не являющихся	я изопроцессами.			
26 Закон Дальтона. Газовые смеси. Полупроницаемые перегородки.				
27 Внутренняя энергия одноатомного газа. Работа и количество теплоть	I.			
28 Первый закон термодинамики и его применение для различных процесстояния системы. Адиабатный процесс.	ессов изменения			
29 Тепловые двигатели. Расчет КПД тепловых установок графическим с	способом.			
30 Решение комбинированных задач по разделам: Механика. Термодина	амика.			
Электродинамика.				
31 Конденсаторы. Энергия электрического поля.				
32 Решение задач по теме: «Параллельное и последовательное соединен	ие конденсаторов»			
33 Решение задач по теме: «Расчет количества теплоты, выделяющегося конденсаторов»	при соединении			
34 Решение задач по теме: Движение заряженной частицы в электрическ	ком поле»			

Тематическое планирование. 11 класс

№п/п	Тема урока			
	Электродинамика			
1	Электрический ток в металлах и растворах и расплавах электролитов. Электрический			
	ток в газах и вакууме.			
2	Электрический ток в полупроводниках			
3	Практическая работа «Определение магнитного поля Земли»			
4	Действие магнитного поля на движущуюся заряженную частицу. Сила Лоренца			
5	Решение задач: "Движение заряженной частицы в магнитном поле			
6	Движение проводника с током в магнитном поле. Решение задач.			
7	Решение задач: "ЭДС индукции в движущихся проводниках"			
8	Решение задач: "ЭДС индукции в движущихся проводниках"			
9	Решение комбинированных задач: «Постоянный ток. Магнитное поле»			
10	Решение комбинированных задач: «Механика. Магнитное поле»			
11	Аналогия между механическими и электромагнитными колебаниями. Решение задач:			
	«Гармонические электромагнитные колебания.»			
12	Решение задач: «Гармонические электромагнитные колебания»			
13	Решение задач: «Превращение энергии в колебательном контуре».			
14	Конденсатор в цепи переменного тока.			
15	Катушка индуктивности в цепи переменного тока. Решение задач: "Переменный			
	электрический ток"			
	Оптика			
16	Отражение света. Закон отражения света. Плоское зеркало. Преломление света.			
	Полное внутреннее отражение. Решение задач			
17	Линза. Формула тонкой линзы. Построение изображений в оптических приборах.			
18	Решение задач комбинированных задач по разделам: «Механика. Оптика»			
19	Волновые свойства света. Интерференция света. Решение задач			
20	Дифракция и поляризация механических волн. Дисперсия света. Дифракционная			
	решетка. Решение задач			
21	Интерференция в тонких пленках. Некоторые области применения интерференции.			
	Границы применимости геометрической оптики			
	Электромагнитные волны			
22	Электромагнитные волны. Принципы радиосвязи и телевидения. Распространение			
	электромагнитных волн. Модуляция и детектирование			
23	Решение задач: «Распространение электромагнитных волн»			
24	Решение задач: «Распространение электромагнитных волн»			
	Квантовая физика			
25	Фотоэффект. Опыты А.Г. Столетова. Уравнение Эйнштейна для фотоэффекта.			
26	Решение задач: «Законы фотоэффекта»			
27	Решение задач: «Законы фотоэффекта»			
28	Фотон. Гипотеза де Бройля о волновых свойствах частиц. Дифракция электронов.			
29	Давление света. Решение задач			
30	Давление света. Решение задач Теория атома водорода. Квантование орбиты скоростей. Решение задач.			
31	Теория атома водорода. Квантование ороиты скоростеи. Решение задач. Энергетические уровни атома водорода. Обобщенная формула Бальмера. Решение задач.			
32	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
33	Решение задач по теме: «Энергетические переходы»			
34	Строение атомного ядра. Дефект массы. Решение задач			
34	Период полураспада. Решение задач			

Список литературы

- 1.ФИЗИКА: Учеб. с CD диском для 10 кл. общеобразовательных учреждений: базовый и проф. уровни / Г. Я. Мякишев, Б. Б. Буховцев, Н.Н. Сотский. , М.-Просвещение, 2020г.
- 2.ФИЗИКА: Учеб. с CD диском для 11 кл. общеобразовательных учреждений: базовый и проф. уровни / Г. Я. Мякишев, Б. Б. Буховцев, Н.Н. Сотский. , М.-Просвещение, 2021г.
- 3. Физика. Задачник. 10-11 классы: Пособие для общеобразовательных учебных заведений/ А.П. Рымкевич, М.: Дрофа,2020г.
- 4. Кабардин О.Ф., Орлов В.А. Международные физические олимпиады школьников /Под редакцией В.Г.Разумовского. М.: Наука, 1985.
- 5. Слободецкий И.Ш., Орлов В.А. Всесоюзные олимпиады по физике: Пособие для учащихся. М.: Просвещение, 1982.
- 6. Балаш В.А. Задачи по физике и методы их решения. М.: Просвещение, 1983..
- 7. Коган В.Ю. Задачи по физике. М.: Просвещение, 1993.

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ

https://ege.sdamgia.ru/

Система СДО Средней школы №7

МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА УЧЕБНОЕ ОБОРУДОВАНИЕ

- -ноутбук;
- -МФУ;
- -электронная доска;
- -колонки.